If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n^2+4n=286
We move all terms to the left:
2n^2+4n-(286)=0
a = 2; b = 4; c = -286;
Δ = b2-4ac
Δ = 42-4·2·(-286)
Δ = 2304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2304}=48$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-48}{2*2}=\frac{-52}{4} =-13 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+48}{2*2}=\frac{44}{4} =11 $
| 7 x + 12 = 68 | | r÷8=16 | | x-26=-2(x-5)-x | | -2x=-7-15 | | Y=-2x^+12x-10 | | X+3+2/3=2x+1/3 | | 6x+4=25+x | | x2=25/576 | | -5=(n-3)-8 | | 4x-2x-7=3 | | (11x+8)=(12x–4)=180 | | -12+(x-5)=-9 | | 5x+3x-4=+7x | | 3m+5m=-2(m+5) | | 4(2x-6)-3x=11 | | 5x-3=2x-11 | | 32=2(2w)+2(25)+2(w5) | | -12x+48=-12x-72 | | -46=b−73 | | 3(x+5)=3-(x+5) | | -4-3+2x=10 | | 2x=5x-135 | | 1r-1=0.65 | | 16+5x=7x | | -5y+2(y-5)=-19 | | 12c+4=16c-20 | | 4x+24-3x=26 | | m-18=25 | | 6=1/2(2w) | | W=6x | | m−18=25 | | 6=1/22w |